Family Size and Turnover Rates among Several Classes of Small Non–Protein-Coding RNA Genes in Caenorhabditis Nematodes

نویسندگان

  • Paul Po-Shen Wang
  • Ilya Ruvinsky
چکیده

It is important to understand the forces that shape the size and evolutionary histories of gene families. Here, we investigated the evolution of non-protein-coding RNA genes in the genomes of Caenorhabditis nematodes. We specifically focused on nested arrangements, that is, cases in which an RNA gene is entirely contained in an intron of another gene. Comparing these arrangements between species simplifies the inference of orthology and, therefore, of evolutionary fates of nested genes. Two distinct patterns are evident in the data. Genes encoding small nuclear RNAs (snRNAs) and transfer RNAs form large families, which have persisted since before the common ancestor of Metazoa. Yet, individual genes die relatively rapidly, with few orthologs having survived since the divergence of Caenorhabditis elegans and Caenorhabditis briggsae. In contrast, genes encoding small nucleolar RNAs (snoRNAs) are either single-copy or form small families. Individual snoRNAs turn over at a relatively slow rate-most C. elegans genes have clearly identifiable orthologs in C. briggsae. We also found that in Drosophila, genes from larger snRNA families die at a faster rate than their counterparts from single-gene families. These results suggest that a relationship between family size and the rate of gene turnover may be a general feature of genome evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of structured non-coding RNAs in the genomes of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae.

We present a survey for non-coding RNAs and other structured RNA motifs in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae using the RNAz program. This approach explicitly evaluates comparative sequence information to detect stabilizing selection acting on RNA secondary structure. We detect 3,672 structured RNA motifs, of which only 678 are known non-translated RNAs (ncRNAs) o...

متن کامل

Computational Identification of Micro RNAs and Their Transcript Target(s) in Field Mustard (Brassica rapa L.)

Background: Micro RNAs (miRNAs) are a pivotal part of non-protein-coding endogenous small RNA molecules that regulate the genes involved in plant growth and development, and respond to biotic and abiotic environmental stresses posttranscriptionally.Objective: In the present study, we report the results of a systemic search for identifi cation of new miRNAs in B. rapa using homology-based ...

متن کامل

Phylogenetic Analysis of Three Long Non-coding RNA Genes: AK082072, AK043754 and AK082467

Now, it is clear that protein is just one of the most functional products produced by the eukaryotic genome. Indeed, a major part of the human genome is transcribed to non-coding sequences than to the coding sequence of the protein. In this study, we selected three long non-coding RNAs namely AK082072, AK043754 and AK082467 which show brain expression and local region conservation among vertebr...

متن کامل

Evolution of small nucleolar RNAs in nematodes

In contrast to mRNAs, which are templates for translating proteins, non-protein coding (npc) RNAs (also known as 'non-coding' RNA, ncRNA), exhibit various functions in different compartments and developmental stages of the cell. Small nucleolar RNAs (snoRNAs), one of the largest classes of npcRNAs, guide post-transcriptional modifications of other RNAs that are crucial for appropriate RNA foldi...

متن کامل

Long non-coding RNAs and their significance in human diseases

Protein-coding genes account for only a small fraction of the human genome and most of the genomic sequences are transcriptionally silent, but recent observations indicate significant functional elements, including non-coding protein transcripts in the human genome. Long non-coding RNAs (lncRNAs) have been defined as transcripts of >200 nucleotides without protein-coding capacity that perform t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012